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We present results of a standard~constant energy! molecular dynamics simulation of Lennard-Jones micro-
crystals at low temperature. The kinetic energy fluctuations exhibit an anomalous behavior, being much larger
than expected in a microcanonical ensemble; this is due to a dynamics, which is only weakly chaotic. Such a
dynamics does not warrant the equivalence of time and ensemble averages, unless one extends the simulation
over exceedingly long times. A similar phenomenon has been recently found in the simulation of a canonical
ensemble through a Nose´-Hoover dynamics.@S1063-651X~96!03807-X#

PACS number~s!: 05.40.1j, 63.70.1h, 65.40.1g

In condensed matter systems, the atoms typically interact
through a potential characterized by a strongly repulsive core
at short distances and a soft attractive part at large distances;
an example of this kind is the well known Lennard-Jones
potential, widely used for systems that can be modeled by a
pairwise additive interaction. At high temperature the dy-
namics of the atoms will be determined mainly by the repul-
sive core. At low temperature, on the other hand, the atoms
will oscillate around the bottom of a potential well; they can
therefore be described by a harmonic Hamiltonian perturbed
by nonlinear terms.

In the first case the dynamics will be similar to that of
hard spheres, in the second case to that of perturbed har-
monic oscillators. Now, the system of hard spheres is sup-
posed to be ergodic@1#, while the Kol’mogorov-Arnol’d-
Moser theorem demonstrates that a system of perturbed
harmonic oscillators behaves in an ordered way in a region
of positive measure of the phase space@2#. One therefore has
to expect that when lowering the temperature of a generic
condensed matter system, its behavior will be driven through
a dynamical chaos-to-order transition.

Great progress has been made in understanding the dy-
namical properties of nonlinear Hamiltonian systems with
many degrees of freedom~DOFs!, since the famous numeri-
cal work by Fermi, Pasta and Ulam at Los Alamos@3#. How-
ever, the transition region from a highly chaotic to a highly
ordered dynamics in those systems is still a quite unexplored
field. Recently, extensive numerical simulations@4# have
clearly shown the generic existence, for nonintegrable sys-
tems, of a critical value of the energy per DOF, calledstrong
stochasticity threshold~SST!. Above the threshold the mo-
tion appears strongly chaotic, and fast relaxation and fast
mixing are observed. On the other hand, at energies lower
than the SST, the motion isapparentlyregular, and very long
relaxation times can be found by reducing the energy of the
initial excitation; in any event, the largest Lyapunov expo-

nent l1 @5# is always found positive, which means that at
least weak chaos is always present. The SST seems to be
independent ofN.

Does this dynamical transition through the SST affect
macroscopic~thermodynamical! properties of the system? If
the answer were positive, would it be so also in the thermo-
dynamic limit? In this paper we give an example of how the
chaos-to-order transition may strongly affect standard prop-
erties of standard systems in a molecular dynamics~MD!
experiment. We have performed computer experiments on
three-dimensional~3D! face centered cubic~fcc! Lennard-
Jones microcrystals of different sizes, and measured the ki-
netic energy fluctuations in the temperature range below 15
K ~for argon!. We have found that their average can be sig-
nificantly different from the expected one, for simulation
times that are typical in this kind of computer experiment.
For very long trajectories in the phase space, this average
slowly relaxes to the expected value; this behavior can be
explained by the existence of weak chaos, i.e., of a partially
ordered dynamics, in the low-temperature region of the
phase space.

The systems we study are fcc lattices with periodic
boundary conditions, with square or rectangular faces, and a
number of atoms varying between 256 (43434 elementary
cells! and 32 768 (8383128 elementary cells!. The atoms
interact through a Lennard-Jones potential
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The cutoff of the potential is atr c52.746s, so that the
interaction reaches the shell of the sixth neighbours; the lat-
tice parameter is 1.548s. In the following, the Lennard-
Jones parameters will be given the values appropriate for
argon: s53.405 Å, e5119.8kB ; the corresponding time
unit is t5(ms2/48«)1/253.112310213 s.

The systems have been simulated at various temperatures
below 15 K. The equations of motion have been integrated
with a central difference algorithm, frequently used in MD
experiments@6#. We have used a time steph50.032t
510214 s; each run had a first equilibration stage of 5000
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steps, followed by a stage of up to 300 000 steps, during
which equilibrium averages were computed.

The computations were performed on APE100, a special
purpose parallel computer designed and produced by the Isti-
tuto Nazionale di Fisica Nucleare in Italy@7#. For systems up
to 2048 atoms we used aboardwith 8 processors, while for
the systems with 4096 and 32 768 atoms we used acrate
with 128 processors. The processors of APE100 are put on a
3D toroidal structure, i.e., on a cubic lattice with first neigh-
bour connection and periodic boundary conditions. We have
simulated the Lennard-Jones~LJ! lattice through a ‘‘domain
decomposition technique with frames’’@8#. The computation
time varied between 4 h on a board for the smallest system
and 9 h on a crate for the largest one. The latter computation
would have lasted for 140 d on the CPU of an alfa-VAX
3000-400 workstation.

The periodic boundary conditions imposed on the simu-
lated systems keep the total energy constant; therefore, if the
system were ergodic, its trajectory in the phase space would
sample a microcanonical ensemble. For this ensemble the
specific heat per particle at constant volume is related to the
average fluctuation of the kinetic energy through the for-
mula:

Cv5
dkB /2

12~Nd/2!~^K2&2^K&2!/^K&2
, ~2!

whereN is the number of particles,d the dimensionality of
the system, andK its total kinetic energy;̂ & is an ensemble
average @9#. The temperature has been defined through
^K&5NdkBT/2. We have used formula~2! to check the er-
godicity of our systems, that is, the equivalence of time and
ensemble averages.

We have performed equilibrium runs for systems of 256,
2048, 4096, and 32 768 atoms, computing the specific heat
per particle through formula~2!, averaging over 23103,
23104, 105, and 33105 time steps. Above 4 K, after 5000
steps of equilibration, an average over 2000 steps~20 ps! is
already sufficient to findCv53kB . This is the value ex-
pected at low temperature for the harmonic limit of a solid.
But below 4 K, the situation changes completely. In Fig. 1
we report the results relative to an intermediate system. The
figure shows the following features, which are common also

to the other simulated systems of different size:~i! Cv has
the expected value of 3kB when T.4 K, except for some
values computed over 20 ps, which are not yet fully stabi-
lized. ~ii ! Lowering the temperature below 4 K, one finds a
temperatureTa at which the specific heat starts increasing
above its expected value.Ta tends to zero for increasing
averaging times.~iii ! In the temperature range belowTa the
specific heat changes abruptly from positive to negative val-
ues; there is a temperatureT* whereCv diverges, positively
from the right and negatively from the left. AlsoT* tends to
zero for increasing averaging times.~iv! Cv tends to zero at
the lowest temperature.~v! All these features do not seem to
depend onN.

The peculiar results for the specific heat are a clear sign
that, at low temperature, time averages of the kinetic energy
fluctuations—even over very long times—are not equivalent
to ensemble averages. Formula~2! shows that the specific
heat diverges at the temperature (T* ) at which the average
fluctuation of the kinetic energŷ (dK)2&5^K2&2^K&2

equals 2̂K&2/Nd. Such a fluctuation would be expected in a
canonical ensemble, while the value expected in a microca-
nonical ensemble iŝK&2/Nd @9#. The fact thatCv tends to
zero from negative values whenT→0 means that̂K&2→0
faster than^(dK)2&, again a sign of an anomalously high
fluctuation of the kinetic energy.

In order to give a quantitative description of these anoma-
lous fluctuations, and of their dependence on temperature
and system size, we proceed as follows. The results reported
above show that—below 4 K—at a given temperature~i.e.,
at a given average kinetic energy! the fluctuation of the ki-
netic energy is higher than expected, that is, has the value
one would expect at a higher temperature. We callexcess
temperaturethe difference between the latter~‘‘measured’’
through the fluctuation ofK) and the former temperature
~measured througĥK&). We define an excess kinetic energy
asZN5@Nd(^K2&2^K&2)#1/22^K&; in a microcanonical en-
semble one should haveZN50. When the fluctuation of the
kinetic energy exceeds the expected value,ZN.0 and an
excess temperature, independent ofN, can be defined
throughT̃52kBZN /Nd.

In Fig. 2 we report the values ofT̃ for a system of 4096
particles; the other systems show similar features. The curves
in the figure show that the excess temperature tends to zero,
but very slowly: the fluctuation of the kinetic energy tends to

FIG. 1. Specific heat vs temperature, in a 4096 particles system,
for increasing averaging times. The horizontal line corresponds to
Cv53kB .

FIG. 2. Excess temperature vs temperature, in a 4096 particle
system, for increasing averaging times.

54 965BRIEF REPORTS



become ‘‘normal’’ when averaged over times that are much
longer than those used in standard MD experiments. To
make this statement quantitative, we report in Fig. 3 the
maximum value ofT̃ as a function of the averaging timet,
for the four simulated systems. For large times the behavior
of the maximum excess temperature can be represented by a
law T̃m.A(t/t)a. The parametersA anda have been deter-
mined fitting the values ofT̃m averaged over three curves
~we discarded the curve relative to the system of 2048 atoms,
which behaves in a slightly different way than the others! for
t>200 ps. We foundA55.33 K anda520.85.

The curves in Fig. 2 allow also an easy location of the
temperatureT* . The valuesZN5A2^K&2^K&, where the
denominator in~2! vanishes andCv diverges, give in that
figure the straight lineT̃50.414T. The intercept of this line
with the curvesT̃(T) locates the valuesT5T* at different
times, more precisely than can be done through the curves of
Fig. 1. In Fig. 4 we report the values ofT* at various times,
for the four simulated systems.T* diminishes witht more
rapidly than a power law, which would give a straight line in
the log10T* /log10t plot. On the other hand,T* diminishes
more slowly than an exponential law, as could be seen in a
log10T* /t plot.

The results reported so far show that, when sampling a
microcanonical ensemble at low energy, the fluctuation of
the kinetic energy has an anomalous amplitude over times

that are more than sufficient to compute thermodynamic av-
erages of other, ‘‘well-behaved’’ quantities. The low-energy
range corresponds, for argon, to temperatures below 4 K,
where the temperature in the computer experiment is defined
in the usual way, through the average kinetic energy. This
identification deserves some specification. It has been shown
through computer experiments, several years ago, that a
Lennard-Jones crystal at low temperature exhibits a behavior
that is quite different from what is expected in the framework
of the traditional classical statistical mechanics: this is due to
the presence of a dynamics that is at least partially ordered.
In particular, in this temperature range equipartition of en-
ergy among normal modes does not hold@10#. One may
wonder what meaning should be given in this context to the
thermodynamic temperature. On the other hand, in the same
computer experiments, one observes that equipartition be-
tween kinetic and potential energy holds quite strictly, hav-
ing taken into account the small anharmonicity left at low
energy; therefore, the temperature may be defined as usual
through the particle kinetic energy, which shows no ‘‘pathol-
ogy’’ in this range.

The persistence of an average kinetic energy fluctuation
larger than expected is evident at very low energy, like the
one corresponding to the first points~on the left! in Fig. 2,
where the descent ofT̃ with time is nearly frozen. This is not
related to the general reduction of all vibrational amplitudes
and velocities when the temperature is lowered. In a com-
puter experiment performed on an fcc LJ system similar to
ours@11#, it was found that at a low temperature, correspond-
ing to 1.8 K for argon, the position and velocity autocorre-
lations of the particles had an oscillating structure decaying
over less than ten vibrational periods, where a typical vibra-
tional period is of the order of 0.7 ps. Therefore, the very
long decaying time of the excess temperature, which can be
seen in Figs. 3 and 4 to extend over more than 1000 ps,
cannot be related to the particles’ autocorrelations. On the
other hand, as shown in@11#, the normal modes do indeed
exhibit long-lasting oscillations, when excited individually.
It is this lack of ‘‘attrition’’ among modes, characteristic of a
weakly chaotic dynamical regime, which is responsible for
the slow relaxation of the kinetic energy fluctuation, and in-
fluences the short- and medium-time macroscopic behavior
of the system.

The anomalous behavior of^(dK)2&, translated into ex-
cess temperature, seems to depend very slightly onN; other
computer experiments on 2D systems, not reported here, in-
dicate that it is also independent of the dimensionality and of
the connectivity~interaction range!. This anomaly is there-
fore quite generic, and one can expect other thermodynamic
quantities to be influenced, in a classical statistical mechan-
ics framework, by an ordered dynamics, which certainly pre-
vents the systems from being quasiergodic@12#. Figure 2
indicates that, at low temperature, a significant systematic
error is to be expected in a computation ofCv through for-
mula ~2!, if ensemble averages are substituted by time aver-
ages performed over the usual time of a standard equilibrium
MD simulation (;100 ps!. From the point of view of some-
body simulating a real system under realistic conditions, this
point should be disquieting, because in the same energy
range several quantities behave as expected, so that no warn-
ing ensues from their computation. In other words, the

FIG. 3. Maximum excess temperature vs averaging time in the
four systems.

FIG. 4. Temperature at whichCv diverges vs averaging time, in
the four systems.
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anomalous behavior~if any! can be detected only if one
adopts a set ofappropriatecoordinates to describe the dy-
namics of the system. For a lattice, this set are the normal
modes@10#, while the particle Cartesian coordinates do not
exhibit a visible anomaly in their dynamics@11#.

Our results on the computation ofCv shade the belief,
current in the community of condensed matter simulators,
that the rate of convergence of time averages to ensemble
averages of thermodynamic quantities is fast enough in the
usual computers experiments. Indeed, it is known that the
rate of energy sharing among collective modes may be very
slow if the DOFs of the system have very different charac-
teristic frequencies, as may happen in molecules, macromol-
ecules, and molecular crystals@13#. This simulation warns
that also in systems endowed with a limited set of character-
istic frequencies, such as an fcc crystal, a slow relaxation in
the phase space may strongly affect the computation of ther-
modynamic quantities at low temperature.

When one simulates a real system at equilibrium, how can
one check whether the system behaves correctly from a sta-
tistical point of view? For a system with many DOFs, the
usual indicators of chaos and order~Lyapunov exponents,
spectral entropy, fractal dimension! give a global character-
ization; therefore, they cannot unveil whether a subset of the
variables has an ordered dynamics. This problem can be
tackled using a diagnostic tool, recently developed for the

analysis of the order-to-chaos transition: thecoherence
angles, defined through the dynamics in the tangent space
@14#. They allow one to analyse the short and medium time
dynamics of single variables in a complex structure, and are
suitable for systems with many DOFs. The coherence angle
of a DOF is a measure of its degree of chaos; therefore, a
coherence spectrum of the whole system tells whether all
DOFs are roughly equivalent~which should secure the quasi-
ergodic character of the dynamics! or not.

Anomalous fluctuations of the kinetic energy have been
found recently in computer experiments using Nose´-Hoover
dynamics to sample a canonical ensemble@15#. In that simu-
lation, a fluid or solid LJ system of about 100 particles is
coupled to a thermal bath through a heat-flow variablez. It
turns out that also in this case the dynamics of the extended
system~particles1 heat-flow variable! is partially ordered,
as can be seen through a coarse-grained description of the
instantaneous kinetic temperature and ofz, which gives rise
to a Toda oscillator. This ‘‘smooth’’ integrability is sufficient
to hamper the chaotic behavior of the system, and produces
unwanted, long-lasting undulations of the kinetic energy. In
order to recover the expected canonical value of the fluctua-
tion of the kinetic energy, one has to simulate the system for
as much as 5000 ps. Quoting those authors, ‘‘this behavior
violates the Principle of Exhaustion of the Observer.’’
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